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Abstract
The nonequilibrium reweighting technique, which was recently developed by
the present authors, is used for the study of nonequilibrium steady states. The
renewed formulation of nonequlibrium reweighting enables us to use the
very efficient multi-spin coding. We apply the nonequilibrium reweighting
technique to the driven diffusive lattice gas model. Combining with the
dynamical finite-size scaling theory, we estimate the critical temperature Tc and
the dynamical exponent z. We also argue that this technique has an interesting
feature that enables explicit calculation of derivatives of thermodynamic
quantities without resorting to numerical differences.

PACS numbers: 75.40.Gb, 05.10.Ln, 66.30.Hs

Most phenomena occurring in nature are in nonequilibrium states. Nonequilibrium systems,
such as epidemics [1], vehicular traffic [2], biological networks [3] and catalysis [4] have
attracted a lot of attention. Monte Carlo simulation has become a standard tool in scientific
computing, and advanced simulation methods, such as cluster algorithms [5, 6] and generalized
ensemble methods [7–10] have been developed. However, many advanced Monte Carlo
methods are not applicable to nonequilibrium systems. Efficient Monte Carlo algorithms for
nonequilibrium simulation are much needed.

Quite recently, the present authors [11] have developed a reweighting method for
nonequilibrium systems based on sequential importance sampling (SIS) [12, 13]. With
nonequilibrium reweighting, only simulation at a single temperature is required to obtain
information for a range of temperatures. The nonequilibrium reweighting method differs
conceptually from conventional Monte Carlo methods. In many Monte Carlo methods, a
sequence of micro-states is sampled by using the Boltzmann distribution. One can interpret this
as sampling over a ‘path’ generated by the associated Monte Carlo updates. Thermodynamic
quantities are then averaged over this path. In nonequilibrium reweighting, many paths are
first sampled with a trial distribution that is not necessarily equal to the Boltzmann distribution.
Then thermodynamic quantities are calculated based on the relative probability between the
trial distribution and the Boltzmann distribution. The relative probability is called ‘weights’ in
literature, which we shall use hereafter. The advantage of this is that one could sample many
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paths at one temperature and then calculate required thermodynamic quantities for a range of
temperatures.

Moreover, Saracco and Albano [14, 15] have proposed an effective analysis of
nonequilibrium phase transitions, in the study of the driven diffusive lattice gas model
[16], using a dynamical finite-size scaling theory. The behaviour of nonequilibrium phase
transitions can be extracted from short-time dynamics [17–19]. If we combine the advantages
of dynamical finite-size scaling and nonequilibrium reweighting, we can achieve an effective
way of simulation for nonequilibrium systems.

In this letter, we apply the nonequilibrium reweighting method [11] to the study of
nonequilibrium steady states [20, 21]. We illustrate our method on the driven diffusive lattice
gas model [16]. We reformulate the nonequilibrium reweighting method and implement very
efficient multi-spin coding [22, 23]. We also make modifications to the dynamical finite-size
scaling relation, which was originally proposed by Saracco and Albano [14, 15], so that the
advantages of reweighting and dynamical finite-size scaling can be combined.

Let us start by explaining the driven diffusive lattice gas model proposed by Katz, Lebowitz
and Spohn (KLS) [16]. This system is one of the most well-known nonequilibrium models
exhibiting a nonequilibrium steady state. It was first proposed as a model for super-ionic
conductors, and attained its popularity due to its complex collective behaviour. It is constructed
as a Lx × Ly square lattice with half-filled lattice sites having periodic boundary conditions.
Its Hamiltonian is given by

H = −4
∑

〈ij,i ′j ′〉
nijni ′j ′ , (1)

where the summation is over nearest lattice sites. The variable nij = 1 when the site is filled
and nij = 0 otherwise. Attempts for each particle to jump to an empty nearest-neighbour site
are given by the Metropolis rate [24],

Tβ,E(σ ′|σ) = min[1, exp(−β(�H − εE))], (2)

where σ and σ ′ are the system configurations before and after the jump, �H represents the
change in energy due to the jump, E is a constant driving force, ε = −1, 0 or 1 depending
on whether the jump is against, orthogonal or along the direction of the drive, and β = 1/T

is the inverse temperature of the thermal bath. The Ly direction is taken as the direction
of the drive. The KLS model exhibits an order–disorder second-order phase transition. In
the ordered phase, strips of high- and low-density domains are formed along the direction of
the drive. In the final steady state, the particles are condensed into a single strip parallel to the
direction of the drive [25]. Hence the order parameter can be defined as the density profile
along the direction of the drive [14], and moments of the order parameters are given by

ρk = 1

(Lx/2)

Lx∑
j=1

∣∣∣∣∣∣
1

Ly

Ly∑
i=1

nij − 1

2

∣∣∣∣∣∣
k

, (3)

where nij = 0 or 1 as defined in equation (1), and k = 1, 2, 4 represents the first, second and
fourth moments of the order parameter, respectively.

We briefly review the nonequilibrium reweighting based on SIS, and show the
implementation on the KLS model. Define a path �xt , a sequence of points in phase space σi

which were visited during the course of simulation, as

�xt = (σ1, σ2, . . . , σt ). (4)
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This path can be sampled by using the Monte Carlo method at an inverse temperature β and
a constant drive E. The objective is to calculate the appropriate weights for computing the
thermal average of a quantity Q at another inverse temperature β ′ and another drive E′,

〈Q(t)〉β ′,E′ =
n∑

j=1

w
j
t Q

(�xj
t

)/ n∑
j=1

w
j
t , (5)

where the sum is over all sampled paths indexed by j and w
j
t are the weights. The number of

paths is denoted by n. To calculate the weights, the following steps are implemented,

(1) Suppose �xj
t = (

σ
j

1 , . . . , σ
j
t

)
up to time t is sampled from a simulation at the inverse

temperature β and drive E.
(2) To go from t, choose a pair of neighbouring lattice sites at random. If one of the two sites

is empty, move the particle to the empty site with the rate, Tβ,E

(
σ ′j ∣∣σ j

t

)
, which is the

Kawasaki spin exchange process. σ ′j denotes the system configuration after the move.
(3) An incremental weight δwj has different values according to two possible outcomes,

(a) If the move is accepted; σ
j

t+1 = σ ′j and δwj = Tβ ′,E′
(
σ ′j ∣∣σ j

t

)/
Tβ,E

(
σ ′j ∣∣σ j

t

)
.

(b) If the move is rejected; σ
j

t+1 = σ
j
t and δwj = [

1 − Tβ ′,E′
(
σ ′j ∣∣σ j

t

)]/[
1 −

Tβ,E

(
σ ′j ∣∣σ j

t

)]
.

The weights at t + 1 are given by this incremental weight through the relation w
j

t+1 =
δwj × w

j
t with w

j

1 = 1.

For each path j ∈ {1, . . . , n}, these steps are repeated until some predetermined maximum
Monte Carlo time is reached.

We make a comment on the technical detail of calculating the weights. For the case of
infinite drive (E = ∞), possible values of incremental weights δwi are,

δw0 = 1,

δw1 = exp(−12(β ′ − β)),

δw2 = exp(−8(β ′ − β)),

δw3 = exp(−4(β ′ − β))

δw4 = (1 − exp(−12β ′))/(1 − exp(−12β)),

δw5 = (1 − exp(−8β ′))/(1 − exp(−8β)),

δw6 = (1 − exp(−4β ′))/(1 − exp(−4β)).

(6)

The weights can then be written as a product of incremental weights,

w
j
t = (δw1)

h
j

1(t)(δw2)
h

j

2(t) · · · (δw6)
h

j

6(t), (7)

where h
j

1(t) · · · hj

6(t) are the number of hits on the incremental weights δw1 · · · δw6 during
the course of simulation from time 1 to t. Note that δw0 is irrelevant in equation (7).
Generalization of this counting method to the case of finite E is trivial. Since the calculation
of weights has been reduced to accumulating a histogram, the multi-spin coding technique
[22] can be implemented not only for the spin update process but also for the calculation of
the histogram of incremental weights. For system configuration updates, we follow the multi-
spin coding technique similar to the case of the Kawasaki spin exchange model [23]. Once
the histogram h

j

1(t) · · · hj

6(t) is obtained, using equation (7) allows us to reweight to a large
number of temperatures (drives) with negligible extra computational effort. A large increase in
efficiency has been obtained by a new formulation of the nonequilibrium reweighting. The
details of the multi-spin coding for the nonequilibrium reweighting will be given elsewhere.
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For the dynamical finite-size scaling, we use the following equation,

ρk = b
− kβ

ν‖ ρ∗(k)
(
b−zτ, b

1
ν‖ ε, b−1Ly, b

− ν⊥
ν‖ Lx, b

x0ρ0
)
, (8)

where k is the kth moment of the order parameter, ρ∗(k) is the scaling function for the kth
moment, b is the spatial rescaling factor, ε = (T − Tc)/Tc, β is the critical exponent for the
order parameter (it should not be confused with the inverse temperature), ν‖ and ν⊥ are the
critical exponents for the correlation length parallel and orthogonal to the drive, respectively.
z is the dynamical exponent and τ is Monte Carlo steps per site. In addition to the original
scaling form of Saracco and Albano [14, 15], our scaling form has a term bx0ρ0 to reflect the
initial system configuration [18, 19]. x0 is an independent exponent and ρ0 
 1 is the order
parameter of the initial configuration. This term was also suggested in a comment to Albano
and Saracco’s paper [15]. Simulations have to be started with a chosen value of ρ0 for all
samples. We prepare our initial configuration with ρ0 = 0 by inserting Ly/2 particles for
each column in the lattice and then shuffling each column independently. Letting b = τ 1/z,
we have

ρk = τ
− kβ

ν‖z ρ∗(k)
(
τ

1
ν‖z ε, τ− 1

z Ly, τ
− ν⊥

ν‖z Lx, τ
x0
z ρ0

)
. (9)

In the limit of Lx → ∞ at the critical temperature (ε = 0) with ρ0 = 0, the ratio-of-moments
reduces to a scaling function with a single argument,

〈ρ4〉
〈ρ2〉2

= g(τ−1/zLy) with ρ0 = 0, ε = 0, Lx → ∞. (10)

By plotting the ratio-of-moments versus τL−z
y at Tc and ρ0 = 0, neglecting corrections to

scaling, the curves for different system sizes Ly will collapse into a single curve. A measure
of goodness-of-fit can be defined for the ‘curve-collapse’ as

η = 1

xmax − xmin

∫ xmax

xmin

∣∣gLy1(x) − gLy2(x)
∣∣ dx, (11)

where gLy1(x) = g
(
τL−z

y1

)
and gLy2(x) = g

(
τL−z

y2

)
. Our task is to choose Tc and z which

minimize η. In using relation (10), we should check that the system size Lx orthogonal to
the drive is large enough. At this point, we should mention that other authors [26, 27] have
studied the KLS model using finite-size scaling at nonequilibrium steady states. While we
focus on dynamical behaviour, other finite-size scaling methods were developed for analysis
at steady states.

We now show the results of the Monte Carlo simulation for the KLS model. We
first illustrate the reweighting for the order parameter, and then show how reweighting
can be combined with dynamical finite-size scaling (equation (10)) to calculate the critical
temperature and dynamical exponent. Figure 1 shows how data over a range of temperatures
can be extracted from simulations at a single temperature. The temporal evolution of the
order parameter ρ for the infinite drive (E = ∞) was investigated for 64 × 32 lattice.
Simulations were performed at T = 3.160, and data were reweighted to nearby temperatures,
T = 3.150, 3.155, 3.165, 3.170 (from top to bottom). Averages were taken over 4.096 × 106

samples. We made independent calculations directly at T = 3.150, for example, to check the
effectiveness of the reweighting. The deviation of the data between the reweighted ones from
T = 3.160 and the direct ones at T = 3.150 is found to be the same within statistical errors.

We also made simulations for the finite drive (E ≈ 0.5). We illustrate the reweighting over
both E and T. We performed two simulations at (T ,E) = (2.765, 0.515) and (2.780, 0.500)

for 32 × 32 lattice. The combination of the order parameters is made by using ρ̄ =( ∑2
k=1 ρk

/
�2

k

)/( ∑2
k=1 1

/
�2

k

)
, where ρ1,2 and �1,2 are the order parameter and error
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Figure 1. Plot of order parameter with infinite drive for 64 × 32 lattice with actual simulation
performed at T = 3.160 shown with a bold line. From top to bottom values of T are 3.150, 3.155,
3.160, 3.165, 3.170. Averages were taken over 4.096 × 106 samples.
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Figure 2. Plot of order parameter with finite drive for 32 × 32 lattice with actual simulation
performed at (T , E) = (2.765, 0.515) and (T ,E) = (2.780, 0.500). Reweighted data are
combined using a weighted mean. From top to bottom values of T and E are (T , E) = (2.760,

0.520), (2.765, 0.515), (2.770, 0.510), (2.775, 0.505), (2.780, 0.500), (2.785, 0.495). Averages
were taken over 2.048 × 106 samples for each simulation.

estimates from the first and second simulations, respectively. Figure 2 shows the temporal
evolution of the order parameter for several temperatures and drives. Data were reweighted
to several values at (T ,E) = (2.760, 0.520), (2.770, 0.510), (2.775, 0.505), (2.785, 0.495).
Averages were taken over 2.048 × 106 samples for each simulation. Generally, we found
that reweighting is effective when the distributions Pβ,E

(�xj
t

)
and Pβ ′,E′

(�xj
t

)
have sufficient

overlaps. Error bars and fluctuations of weights [13] can also be used as quantitative measures
on the effective range of reweighting.

To determine Tc, we use the dynamical finite-size scaling of the ratio-of-moments
(equation (10)). Here we concentrate on the infinite drive (E = ∞). We simulated 64×64 and
64 × 128 lattices, and calculated the ratio of the moments, 〈ρ4〉/〈ρ2〉2. Before going into the
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Figure 3. Plots showing the goodness-of-fit η and corresponding values of dynamical exponent
z for various temperatures. Data are generated by fitting ratio-of-moments for Ly = 64 and
Ly = 128 between the range 〈ρ4〉/〈ρ2〉2 = 1.2 and 1.405. Tc is estimated from the temperature
with the best fit (Tc = 3.175 ± 0.002). Error bars were generated by fitting several ranges of
ratio-of-moments.

0.01 0.1

τ Ly
-z
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ρ4 >/

< 
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2

Figure 4. Scaling plot of 〈ρ4〉/〈ρ2〉2 versus τL−z
y for z = 2.09, Ly = 64 (solid line) and Ly = 128

(dotted line) at T = 3.175. Initial system configurations were prepared with ρ0 = 0.

discussion of the fitting, we make a comment on the system size Lx whether we can consider
as Lx → ∞. We performed simulations for both Lx = 64 and Lx = 128, and confirmed
that the ratio of moments for 64 × Ly and 128 × Ly coincided with each other to within
statistical fluctuations. Thus, we may regard that Lx = 64 is large enough. Since ν‖ > ν⊥
for the KLS model, the correlation length orthogonal to the drive, ξ⊥, develops slowly; hence,
Lx = 64 is large enough to use the scaling relation (10). Now we show the fitting procedure.
Fitting was performed for several temperatures near Tc, which were reweighted from the data
obtained at a single temperature, and for each temperature we adjusted the value of z such
that the goodness-of-fit η, equation (11), becomes minimum. Figure 3 shows η for several
temperatures and the values of z used to calculate η. The best fit occurs at Tc = 3.175±0.002;
the error bar on Tc is estimated by including all neighbouring temperatures where the mean
values of η are within two standard deviations of η at T = 3.175. The value of z within
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T = 3.175 ± 0.002 is z = 2.09 ± 0.01, and we use this value as our estimate of the dynamical
exponent. Figure 4 shows the scaling plot of 〈ρ4〉/〈ρ2〉2 as a function of τL−z

y for 64 × 64
(solid line) and 64 × 128 (dotted line) lattice sizes at T = 3.175 and z = 2.09. The curves are
almost indistinguishable at this scale although some corrections to scaling can be observed
below τL−z

y = 0.02. To study the corrections to scaling, the goodness-of-fit for ratio-of-
moments for smaller sizes, that is, 64 × 32 and 64 × 64 lattices, was also calculated using
a similar procedure. The best fit occurs at T = 3.155 ± 0.005 with z = 2.23 ± 0.03. The
estimate for Tc increases with the system size, whereas that for z decreases. Our estimates of
Tc and z are compatible with the recent estimates for the infinite lattice, Tc = 3.1980±0.0002
[27], Tc = 3.200 ± 0.010 [15], z = 2.016 ± 0.040 [15]. A more systematic analysis of the
corrections to scaling to get a precise estimate of Tc and several critical exponents for infinite
lattice will be left to a separate publication. Before closing we show the actual procedure of
the reweighting for each system size. For 64 × 32 lattice, 4.096 × 106 samples were used
for the simulation at T = 3.16. For 64 × 64 lattice, 8.19 × 105 samples were used for each
simulation at T = 3.174 and 3.180. Results were then reweighted to other temperatures and
combined using a weighted mean, r̄ = ( ∑2

k=1 rk

/
�2

k

)/(∑2
k=1 1

/
�2

k

)
. Here r1,2 and �1,2 are

the ratio-of-moments and error estimates from the first and second simulations, respectively.
For 64×128 lattice size, 1.64×105 samples were used for each simulation at T = 3.174, 3.177
and 3.180, and reweighted results were combined using the same procedure.

To summarize, we have studied the use of nonequilibrium reweighting based on SIS for the
nonequilibrium steady states. We have reformulated the nonequilibrium reweighting method,
which is convenient for the multi-spin coding. As a result, a large increase in efficiency
has been achieved for the performance of simulations. We have applied the nonequilibrium
reweighting to the driven diffusive lattice gas model (the KLS model). Combining with the
dynamical finite-size scaling theory, we have estimated Tc and the dynamical exponent z.

Finally, we make a remark on possible applications. The nonequilibrium reweighting
method is very general and has some very interesting properties. For example, the
fluctuation–dissipation theorem does not hold for nonequilibrium systems and derivatives of
thermodynamic quantities had been estimated using finite differences [28]. With reweighting,
derivatives can be calculated directly by differentiating the weights explicitly, that is,

d〈Q(t)〉β ′

dβ ′ =
∑n

j=1 Q
(�xj

t

) dw
j
t

dβ ′∑n
j=1 w

j
t

− 〈Q(t)〉β ′

∑n
j=1

dw
j
t

dβ ′∑n
j=1 w

j
t

. (12)

Here, dw
j
t

/
dβ ′ can be obtained by differentiating equation (7) with respect to β ′. We believe

that the nonequilibrium reweighting method will have applications in several directions.
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